Простейший бестрансформаторный блок питания для светодиодной матрицы | Freee.ru

Простейший бестрансформаторный блок питания для светодиодной матрицы

Драйвер или блок питания для светодиодов ?

Сегодня в продаже можно увидеть множество различных типов источников питания для светодиодов. Данная статья призвана облегчить выбор нужного вам источника.

Прежде всего, рассмотрим различие стандарного блока питания и драйвера для светодиодов. Для начала нужно определиться - что такое блок питания ? В общем случае это - источник питания любого типа, представляющий собой отдельный функциональный блок. Обычно он имеет определенные входные и выходные параметры, причем неважно - для питания каких именно устройств предназначен. Драйвер для питания светодиодов обеспечивает стабильный ток на выходе. Другими словами - это тоже блок питания. Драйвер - это лишь маркетинговое обозначение - дабы избежать путаницы. До появления светодиодов источники тока - а им и является драйвер, не имели широкого распространения. Но вот появился сверхяркий светодиод - и разработка источников тока пошла семимильными шагами. А чтобы не путаться - их называют драйверами. Итак, давайте договоримся о некоторых терминах. Блок питания - это источник напряжения (constant voltage), Драйвер - источник тока (constant current). Нагрузка - то, что мы подключаем к блоку питания или драйверу.

Блок питания

Блок питания на основе трансформатора

В основе такого блока питания лежит большая, железная, гудящая штуковина.:) Ну, нынешние трансформаторы гудят поменьше. Основное достоинство - простота и относительная безопасность таких блоков. Они содержат минимум деталей, но при этом обладают неплохими характеристиками. Основной минус - КПД и габариты. Чем больше мощность блока питания - тем он тяжелее. Часть энергии расходуется на "гудение" и нагрев 🙂 Кроме того, в самом трансформаторе теряется часть энергии. Другими словами - просто, надежно, но имеет большой вес и много потребляет - КПД на уровне 50-70%. Имеет важный неотъемлемый плюс - гальваническую развязку от сети. Это означает, что если произойдет неисправность или вы случайно залезете рукой во вторичную цепь питания - током вас не стукнет 🙂 Еще один несомненный плюс - блок питания может быть включен в сеть без нагрузки - это ему не повредит.
Но давайте посмотрим, что будет, если перегрузить такой блок питания.
Имеется : трансформаторный блок питания с выходным напряжением 12 вольт и мощностью 10 ватт. Подключим к нему лампочку 12 вольт 5 ватт. Лампочка будет светиться на все свои 5 ватт и потреблять тока 5 / 12 = 0,42 А .

Подключим вторую лампочку последовательно к первой, вот так :

Обе лампочки будут светиться, но очень тускло. При последовательном соединении ток в цепи останется тем же - 0,42 А, а вот напряжение распределится между двумя лампочками, то есть каждая получит по 6 вольт. Понятно, что светиться они будут еле-еле. Да и потреблять при этом будут каждая примерно по 2,5 Вт.
Вообще говоря, ток в цепи все же упадет, но чтобы не портить пример, оставим как есть 🙂
Теперь изменим условия - подключим лампочки параллельно :

Импульсный блок питания

Самый простой и яркий представитель - китайский блок питания для галогеновых ламп 12 В. Содержит небольшое количество деталей, легкий, маленький. Размеры 150 Вт блока - 100х50х50 мм, вес грамм 100. Такой же трансформаторный блок питания весил бы килограмма три, а то и больше. В блоке питания для галогенных ламп тоже есть трансформатор, но он маленький, потому что работает на повышенной частоте. Надо отметить, что КПД такого блока тоже не на высоте - порядка 70-80%, при этом он выдает приличные помехи в электрическую сеть. Есть еще множество блоков, основанных на аналогичном принципе - для ноутбуков, принтеров и т.п. Итак, основное достоинство - небольшие габариты и малый вес. Гальваническая развязка также присутствует. Недостаток - тот же, что и у его трансформаторного собрата. Может сгореть от перегрузки 🙂 Так что если вы решили сделать у себя дома освещение на 12 В галогенных лампах - подсчитайте допустимую нагрузку на каждый трансформатор.
Желательно создавать от 20 до 30% запаса. То есть если у вас трансформатор на 150 Вт - лучше не вешайте на него больше, чем 100 Вт нагрузки. И внимательно следите за равшанами, если они делают у вас ремонт. Расчет мощности им доверять не стоит. Также стоит отметить, что импульсные блоки не любят включения без нагрузки. Именно поэтому не рекомендуется оставлять зарядные устройства для сотовых в розетке по окончании зарядки. Впрочем, это все делают, поэтому большинство нынешних импульсных блоков содержат защиту от включения без нагрузки.

Эти два простых представителя семейства блоков питания выполняют общую задачу - обеспечение нужного уровня напряжения для питания устройств, которые к ним подключены. Как уже было сказано выше - устройства сами решают - сколько тока им нужно.

Драйвер

В общем случае драйвер - это источник тока для светодиодов. Для него обычно не бывает параметра "выходное напряжение". Только выходной ток и мощность. Впрочем, вы уже знаете, как можно определить допустимое выходное напряжение - делим мощность в ваттах на ток в амперах.
На практике это означает следующее. Допустим , параметры драйвера следующие : ток - 300 миллиампер, мощность - 3 ватта. Делим 3 на 0,3 - получаем 10 вольт. Это максимальное выходное напряжение , которое может обеспечить драйвер. Предположим, что у нас есть три светодиода, каждый из них рассчитан на 300 мА, а напряжение на диоде при этом должно быть около 3 вольт. Если мы подключим один диод к нашему драйверу, то напряжение на его выходе будет 3 вольта, а ток 300 мА. Подключим второй диод последовательно (см. пример с лампами выше) с первым - на выходе будет 6 вольт 300 мА, подключим третий - 9 вольт 300 мА. Если же мы подключим светодиоды параллельно - то эти 300 мА распределятся между ними примерно поровну, то есть примерно по 100 мА. Если мы подключим к драйверу на 300 мА трехваттные светодиоды с рабочим током 700 мА - они будут получать только 300 мА.
Надеюсь, принцип понятен. Исправный драйвер ни при каких условиях не выдаст больше тока, чем он рассчитан - как бы вы не подключали диоды. Надо отметить, что есть драйвера, которые рассчитаны на любое количество светодиодов, лишь бы их общая мощность не превышала мощность драйвера, а есть те, которые рассчитаны на определенное количество - 6 диодов, например. Некоторый разброс в меньшую сторону они, впрочем, допускают - можно подключить пять диодов или даже четыре. КПД универсальных драйверов хуже чем у их собратьев, рассчитанных на фиксированное количество диодов в силу некоторых особенностей работы импульсных схем. Также драйвера с фиксированным количеством диодов обычно содержат защиту от нештатных ситуаций. Если драйвер рассчитан на 5 диодов, а вы подключили три - вполне возможно , что защита сработает и диоды либо не включатся либо будут мигать , сигнализируя об аварийном режиме. Надо отметить, что большинство драйверов плохо переносят подключение к питающему напряжению без нагрузки - этим они сильно отличаются от обычного источника напряжения.

Итак , разницу между блоком питания и драйвером мы определили. Теперь рассмотрим основные типы драйверов для светодиодов, начиная с самых простых.

Резистор

Конденсаторная схема.

Микросхема LM317

Драйвер на микросхеме типа HV9910

Драйвер с низковольтным входом

Сетевой драйвер

Применение драйверов на практике

Большинство людей, планирующих использовать светодиоды, совершают типичную ошибку. Сначала приобретаются сами СИД, затем под них подбирается драйвер. Ошибкой это можно считать потому, что в настоящее время мест, где можно приобрести в достаточном ассортименте драйвера, не так уж и много. В итоге, имея на руках вожделенные светодиоды, вы ломаете голову - как подобрать драйвер из имеющегося в наличии. Вот купили вы 10 светодиодов - а драйвера только на 9 есть. И приходится ломать голову - как быть с этим лишним светодиодом. Может быть, проще было сразу на 9 рассчитывать. Поэтому выбор драйвера должен происходить одновременно с выбором светодиодов. Далее, нужно учитывать особенности светодиодов, а именно падение напряжения на них. К примеру, красный 1 Вт светодиод имеет рабочий ток 300 мА и падение напряжения 1,8-2 В. Потребляемая им мощность составит 0,3 х 2 = 0,6 Вт . А вот синий или белый светодиод имеет при таком же токе падение напряжения 3-3,4 В, то есть мощность 1 Вт. Стало быть, драйвер с током 300 мА и мощностью 10 Вт "потянет" 10 белых или 15 красных светодиодов. Разница существенная. Типовая схема подключения 1 Вт светодиодов к драйверу с выходным током 300 мА выглядит так :

У стандартных 1 Вт светодиодов минусовой вывод больше плюсового по размеру, поэтому его легко отличить.

Как же быть, если доступны только драйвера с током 700 мА ? Тогда придется использовать четное количество светодиодов, включая их по два параллельно.

Хочу заметить, что многие ошибочно предполагают, что рабочий ток 1 Вт светодиодов - 350 мА. Это не так, 350 мА - это МАКСИМАЛЬНЫЙ рабочий ток. Это означает, что при продолжительной работе необходимо использовать источник питания с током 300-330 мА. Это же верно и для параллельного включения - ток на один светодиод не должен превышать указанной цифры 300-330 мА. Вовсе не значит, что работа на повышенном токе вызовет отказ светодиода. Но при недостаточном теплоотводе каждый лишний миллиампер способен сократить срок службы. К тому же чем выше ток - тем ниже КПД светодиода, а значит, сильнее его нагрев.

Если речь пойдет о подключении светодиодной ленты или модулей, рассчитанных на 12 или 24 вольта, нужно принимать во внимание, что предлагаемые для них источники питания ограничивают напряжение, а не ток, то есть не являются драйверами в принятой терминологии. Это означает, во первых, что нужно внимательно следить за мощностью нагрузки, подключаемой к определенному блоку питания. Во-вторых, если блок недостаточно стабилен, скачок выходного напряжения может погубить вашу ленту. Слегка облегчает жизнь то, что в лентах и модулях (кластерах) установлены резисторы, позводяющие ограничить ток до определенной степени. Надо сказать, светодиодная лента потребляет относительно большой ток. Например, лента smd 5050 , количество светодиодов в которой составляет 60 штук на метр, потребляет около 1,2 А на метр. То есть для запитки 5 метров понадобится блок питания с током не менее 7-8 ампер. При этом 6 ампер потребит сама лента, а один-два ампера нужно оставить про запас, чтобы не перегружить блок. А 8 ампер - это почти 100 ватт. Такие блоки недешевы.
Драйверы более оптимальны для подключения ленты, но найти такие специфические драйвера проблематично.

Подытоживая, можно сказать, что выбору драйвера для светодиодов нужно уделять не меньше, а то и больше внимания, чем светодиодам. Небрежность при выборе чревата выходом из строя светодиодов, драйвера, чрезмерным потреблением и другими прелестями 🙂

Предыдущая
Мастер-классКак расширить функционал триммера за счет щеток
Следующая
Мастер-классДемонтаж старой и укладка новой плитки на ступеньках порога
Нудно
0
Полезно
0
Супер
0
Добавить комментарий
Adblock
detector